Measuring the Regularity of Array References -

Erin Parkert
parler@cs.unc.edu
fDepartment of Computer Science
The University of North Carolina
Chapel Hill, NC 27599-3175

1. INTRODUCTION

Therunningtimesof largescientificprogramsarestrongly
influencedby thetime spentaccessingnain memory Many
mechanismssuchasprefetching[3], exploit regularaccess
patternsin orderto overlapmemoryaccessesith compu-
tation and,thus,reducememorystall cycles. The benefitof
thesemechanismslependsn the regularity of anapplica-
tion’smemoryaccessedAlthoughsereralaccesslescriptors
have beenproposed?2, 4], accessegularity is an intuitive
concepffor which few formal metricsexist [1].

We considera programto be regular if it containsarray
referencesvith identifiableaccespatternghatarerepeated
asmemoryis traversed. For our purposeswe restrictthis
definitionto linear patterns We presenta setof metricsthat
guantify accessegularity. We have implementeda source-
to-sourcecompilermechanisnto measureaccessegularity.
Resultson our samplecode demonstratehat our analysis
mechanisnis fastandaccurate.

2. THREE APPROACHES

We presentthreeapproachegor measuringthe regular
ity of a program. Our static approachis a low run-time
overheadmechanisnthat usesstatically-determinednfor-
mation, augmentedt run time only by simple scalardata,
suchasloop bounds. Our dynamicapproachinstruments
arrayreferencesothattheir regularity canbe preciselyde-
terminedat run time; this approacthassignificantrun-time
overheadbut is highly accurate.Our overall approachis a
hybrid of the static and dynamicapproaches.It provides
high accurag with reasonableun-time overheadby using
statically-determinedhformationwherepossible.

Thestatic approach examinesaprogramsAST (Abstract
SyntaxTree)atcompiletimeto gatherknowledgeof its loop
nestsandthe array referencesnadewithin the loop nests.
Basedon analysisof thearrayindex expressionswe catego-
rize anarrayreferenceasregular, irregularor indeterminate.
A regular arrayreferencas onein which all indicesarelin-
earexpressionf the LCVs (Loop Control Variables).An
irregular arrayreferencds onein which at leastoneindex
is a nonlinearexpressionof the LCVs. An arrayreference
is indeterminate if at leastoneindex is an expressionthat

*Work performedunderthe auspicesf the U. S. Departmentof
Enegy by University of California LawrenceLivermoreNational
Laboratory under Contract W-7405-Eng-48,UCRL-JC-144545-
abs. Erin Parker is supportedoy a DOE High-Performanc&€om-
puterSciencd-ellowship.

Bronis R. de Supinskit
bronis@lInl.ge

Daniel J. Quinlant
dquinlan@linl.ge

fLawrence Livermore National Laboratory
Center for Applied Scientific Computing

Livermore, CA 94551

cannotbe analyzedat compiletime or the arrayreferenceas

containedn the body of a conditional. For example,the ar-

ray referenceA[B][i]] is indeterminatevithoutknowledgeof

how arrayB is initialized, andthe arrayreferenceA[f(i)] is

indeterminatavithout knowledgeof whatis returnedby the
function f giveninputi. Althoughmoreaggressiecompile-
time analysiscancategyorizesomeoccurrencesf thesetwo

examplesasregularor irregulararrayreferencesin general,
their regularity cannotbe determinedintil runtime.

For ary regulararrayreferencegachexecutionof thein-
nermostoop enclosingt will generatea predictablestream
of arrayaccessesWe call sucha streama regular stream.
Our linear restrictionimplies that array referencesve clas-
sify asirregular do not constitutea regular stream.Indeter
minatearrayreferencesnaybeirregular;ourstaticapproach
assumeshatthey are. Therefore,basedon analysisof the
LCVs of the loop nestscontainingregular arrayreferences,
we cancomputethe numberof regular streamstheir aver-
agelength,andtheproportionof arrayaccessethatoccurin
regularstreamsamongotherstatistics.

The dynamic approach examinesa programsAST to lo-
catearrayreferencegontainedn loop nests.It doesnotan-
alyzetheindicesof arrayreference®r LCVs of loop nests.
Instead we instrumentthe AST with instructionsfor track-
ing the actualvalue of the index to an arrayreference. A
streamof indicesform aregularstreamif the stridebetween
all valuesis the same.We keepthe samestatisticsfor regu-
lar streamsasin the staticapproachThedynamicapproach
accuratelycatagyorizesall arrayreferenceslthoughit makes
no attemptto categorizethemstatically

The hybrid approach combinesthe two approachesle-
scribedabove. As in the staticapproachwe cateyorizean
arrayreferenceasregular, irregularor indeterminate. Then
for every regular arrayreferencewe computethe statistics
for its regular streams.However, insteadof conseratively
assuminghatevery indeterminatearrayreferencas irregu-
lar, we performrun-timetrackingof arrayindicesto discern
actualregularity, asin the dynamicapproach.

It is clearthatthe staticapproachincursvirtually no run-
time overheadbut its accurag canvary widely andis based
on the numberof indeterminatearray referencesn a pro-
gram. The dynamicapproachenjoys greataccurag at the
costof anoticeableun-timeoverhead Thehybridapproach
is designedo incur largerrun-timeoverheadnly whenit is
necessaryor greateraccurag. This relationshipamongthe
accurag and overheadof the three approachess demon-

stratedn Section3.

We accomplishautomaticanalysisand instrumentation
of the AST using ROSE [5]. ROSE s a tool for building
source-to-sourcpreprocessorsthe preprocessogenerates
anAST from the programsourcecode;the AST is thenused
for analysis,instrumentationor optimization. The instru-
mentationof our staticapproachmerely computeghe reg-
ularity statisticsoncethe valuesof any run-time constants
areknown. In our dynamicapproachour instrumentation
actuallytracksarrayindex valuesanddetectsary regularity.
Thehybrid approactonly usesthe moreexpensve run-time
instrumentatiorfor indeterminateeferences

3. RESULTS

In thissectionwe discusgheaccurag andrun-timeover-
headof ourthreeapproachefor asimpletestprogram.This
exampleprogranclearlydemonstratethetrade-ofsbetween
ourapproacheghepostemwill includeresultsfor lesstrivial
programs.

doi =0, regularity_param
do j =0, MAX
sum += A[j]
doi =0, 100 - regularity_param
doj =0, MAX
sum += A[B[j]]

Notethatregularity_param is aninteger provided by the
userat run time whosevalueis between0 and 100. B is
anarrayof integerswith sizeatleastMAX, which hasbeen
initialized in one of two ways. In Casel, BJi] is arandom
integerwith a valuebetween0 andMAX-1, andin Case2,
B[i] =i.

Our exampleprogramhasthreearrayaccesstreamsthe
accesseso the A arrayin both loops and the accesseso
the B arraythatdeterminethe A indicesin the secondoop.
Thereforejn Case1100/(200 — regularity_param)% of ar-
ray accessesccurin regularstreamsand,in Case2, 100%
of arrayaccessesccurin regular streams.All threeof our
approachesorrectlydetectregularity in Casel of the sam-
ple program. However, for Case2 of the sampleprogram,
our staticapproachmisclassifiesarrayreferenceA[B[j]] as
irregular, while ourdynamicandhybridapproachesorrectly
classifyit asregular

In Figurel, we seethatthe runningtime requiredby the
sourcecodeinstrumentedisingour hybrid approachs pro-
portional to the numberof indeterminatearray references
that mustbe tracked at run time, as expected. Notice that
therun-timeoverheadf our hybridapproachs significantly
lessthenthatof our dynamicapproactevenwhenthevalue
of regularity_paramis 0. Althoughthe indeterminatearray
referenceA[B[j]] mustbeinstrumentedor run-timedetec-
tion of regularity, our hybrid approactsavesrun-timeover-
headby statically cateyorizing the array referenceBJ[j] as
regular

4. FUTURE WORK

The effort to measureegularity in programss ongoing,
andthe preliminarywork discussederehasraisedseveral

14— -

dynamic ----
hybrid -----

no instrumentation

12 - 4

10 + d

seconds
®
T
I

2 I I I I

0 60
regularity_param

Figure 1: Running time of the example program when
instrumented according to each of the three approaches
(MAX=100,000).

issueslt is undesirabléo useourdynamicapproacho mea-
suretheregularity of large LLNL codesasit will addover
headto alreadylong-runningprograms.Lik ewise, the pos-
sibleinaccurag of our staticapproacton complicatedpro-
gramsmalkesit unsuitable. Therefore,we areinterestedo
seethe accurag/overheadrade-of of usingour hybrid ap-
proachon suchprograms.Furthermorepur analysiscanbe
expandedo includereferenceso arrayclassobjectsin use
atLLNL, whichwe expectto introducenew challenges.

5. REFERENCES

[1] T. M. Chilimbi. Efficientrepresentationand
abstractiongor quantifyingandexploiting data
referencdocality. In Proceedings of ACM PLDI, pages
191-202,June2001.

[2] P. Havlak andK. KennedyAn implementatiorof
interproceduraboundedegular sectionanalysislEEE
Transactions on Parallel and Distributed Systems,
2(3):350-360,July 1991.

[3] T.C.Mowry. Toleratinglateng in multiprocessors
throughcompilerinsertedprefetching ACM
Transactions on Computer Systems, 16(1):55-92,
Februaryl1998.

[4] Y. Paek,J.Hoeflinger andD. Padua.Simplificationof
arrayaccesgatternsor compileroptimizationslin
Proceedings of ACM PLDI, volume33, pagess0-71,
May 1998.

[5] D. Quinlan.ROSE:Compilersupportfor
object-orientedrameworks.In Parallel Processing
Letters, volume10,2000.Also presentect Conference
on ParallelCompilers(CPC2000)Aussois France,
January2000.

